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Solutions of the non-additive YBE by spectral parameter 
factorization and re-Yang-Baxterization 

A Kundu and B Basu Mallick 
?heoretical Nuclear Phyaie Division, Saha Institute of Nuclear Physics, Block AE 
Sector 1. Bidhannagar Calculta-7W 064, India 

Received 3 March 1992 

AbslracL R-matrix ralutians for the non-additive Yang-Baxter equation are obtained 
in arbitrary dimension using a factorization ansatz in spectral parameten. A symmetry 
transformation determined for thc particle conserving’ R-matrix is used Lo formulate a 
re-Yang-Baxterization scheme with mulrimmpnent spectral parameters, extending the 
notion of conventional Yang-Baxterizalion. ?he  pssible 6mpe for such a wansformation, 
which has a striking resemblance to Rerhetikhin’s deformation of R-matrices but extended 
now Lo include specVal parameten, is discussed. 

1. Introduction 

The importance of the Yang-Baxter equation (YBE), after its successful application to 
statistical and quantum integrable systems, see for example [l], has been reaffirmed 
recently due to the major role it has played in diverse subjects like quantum groups, 
braid groups, link and knot polynomials etc, see for example [Z]. In general the 
Yang-Baxter equation may be given through the elements of the quantum R-matrix 
as 

(1.1) 

where the indices run from 1 to N and A, p, y are in general multicomponent spectral 
parameters. However, most of the solutions of the YBE considered in the literature are 
of additive type, i.e. R( A , p )  E R(A-p) with single-component spectral parameters. 
Nevertheless some important classes of integrable models related to both elliptic and 
higher genus cuwes have also been investigated, in which non-additive solutions with 
multicomponent spectral parameters were obtained [3]. 

On the other hand it has been recently discovered, that starting from the spectrai- 
parameterless braid group solution, and using the Yang-Baxterization procedure, it is 
possible to construct an additive type (N2 x N z )  R-matrix expressed in trigonometric 
functions [4]. Though the parallel procedure for the non-additive case is not yet so 
well formulated, some interesting investigations leading to explicit YEE solutions of 
this type have been carried out for N = 2 [S, 61. Therefore it is natural to seek some 
generalization of such non-additive R(  A, p)-matrix solutions for arbitrary N. At the 
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same time it would also be encouraging to explore the possible Yang-Baxterization 
procedure for systematically generating such solutions, starting from the braid group 
representations, and generalizing them to the multicomponent spectral parameter 
case. 

These objectives motivated us to use an interesting spectral parameter 
factorization ansatz of R-matrix elements to find an explicit solution of the non- 
additive YBE (1.1) for arbitrary N .  It is worth mentioning that a t  the limit X = p 
such solutions yield multiparameter deformations of the standard [I as well as the 
graded or 'exotic' braid group solutions [6,8] related to g l ( N ) .  By restricting our 
investigation to the 'particle consewing' case we are able to find some spectral 
parameter dependent symmetry transformations of the R-matrix, which in turn helps 
to formulate a re-Yang-Baxterization scheme for producing more general solutions 
of the YBE. We discuss also the similarity of such transformations with Reshetikhin's 
consrrucriun 01 me uervrmeu n-maim p j  anu LS pussme impiicanons. 

Thqarrangement of this paper is as follows. In section 2 the proposed 
factorization ansatz is used to solve the non-additive YBE for the case of higher 
N .  Section 3 finds the explicit R-matrix solution and the corresponding braid group 
representation. In section 4 the symmetry transformation is explored and the re- 
Yang-Baxterization scheme is presented. Section 5 gives the concluding remarb. 
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2. The factorization ansatz and its application to the VBE 

Since the WE actually represents a collection of a large number of equations, it is, 
in general, difficult to find explicit solutions of it without assuming some symmetry 
condition. As we aim to find solutions of equation (Ll), which would contain the 
braid group realization of g l ( N )  in the standard representation, we may restrict 
ourselves to both the 'particle conserving' and the triangular form of the R-matrix. 
In element notation this means that R;k: # 0 only when the incoming indices ( i , j )  
are same as the outgoing ones ( I C ,  l ) ,  modulo their permutations, and moreover, 
R1i f ;  0, when i < j ( i  > j )  for the upper (lower) triangular case. Since now in the 
YBE the incoming indices (i:: i2: i,) must be sume permutations of the outgoing ones 
( j , ,  j , , j3,) the resulting equations are considerably simplified and may be grouped 
together m the following way. 

Evidently the set of equations where all the three incoming 'particles' or indices 
are identical are trivially satisfied. However those with only two coinciding indices 
(say i ) and the third being different ( say j ) give the non-trivial equations 

I J  

where we have introduced the shorthand notation R = R( A ,  p) ,  R' = R( A ,  ?), 
R" = R(p ,? )  for the arguments of the R-matrix elements and we have chosen in 
particular the upper triangular case. Note that for N = 2, when the indices can take 
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only two different values, the equations (2.la)-(2.ld) constitute the complete set. On 
the other hand, for the higher N case another situation where all the three incoming 
indices are different ( i  # j # k )  should also be mnsidered along with this set. Such 
an additional set takes the form 

. .  . . .  
R:; RI;: = R;: R I ~ J .  13 R?: = R?:RI+: 

We now propose an ansatz for finding explicit solutions for the R-matrix, 
where each element of it is factorized in spectral parameters as R!/(A,p) = 
fh'( A)gl;!(p). Curiously this ansatz leads to the separation of spectral parameters 
allowing decoupling of three independent variables in the YBE and highly simplifies 
these algebraic equations, just in analogy with the separation of variables in partial 
differential equations. For example equations (2.la)-(2.lb) now give 

with the interesting consequence 
. .  

f:i(A) = cijfj:(A) gfi(A) = d . .  I J  g,J ! ? ( A )  (2.4) 
where cij and d i j  are constants independent of spectral parameters. Application 
of the factorization ansatz along with the relation (24) reduces in turn equations 
(2.lc)-(2.ld) to the form 

f!; ( A)g{,! ( A )  = { fjj ( A)ga ( A )  - AG'fj,? (A)g:; ( A )  ) 

= {fii(A)g;;(A) - AG*fj:(A)gij(A)} (2.5) 
where A .  . = c . .  E . .  d . .  d .. 

As already mentioned, for higher N values one should also consider the set of 
equations (2.2), where we may again apply our factorization ansatz together with the 
above reduced relations (2.4) and (2.5). As a result one finally obtains 

' 3  ' 3  J l . * J  3 : '  

Aikf i i (  A)gi$( A )  = Akjf::( A)gij(A) = AijfL/(A)gL:(A). (2 .6~)  
It may be noted that while (2.4) and (2 .6~)  establish relations between the diagonal 
elements of f and g, (2.5) and (2.Q), (2.6b) relate diagonal entries to the non- 
diagonal ones. In the next section we will explore explicit solutions of the YBE for 
the general N case using the relations derived here. 
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3. Explicit solutions of the non-additive YBE for higher N values 

It is evident from (2.64 that the products of functions fi,!(A)gii(A) for any mlue of 
i are related to each other and may be expressed as 

A Kundu and B Basu MaNick 

f,!,!(A)gii(A) = p i K ( A )  ( 3 4  
where the pi’s are A-independent constants. This form in turn reduces (2.6~) itself 
to A i k p j  = A k j p i  = A i . p  J L  suggesting a possible solution Aij  = pip j .  Using these 
results we can rewrite (2.5) as 

which interestingly restricts the values of pi through a quadratic equation pi - p;’ = 

will see later an important consequence of these two different solutions; namely the 
case when all the pi’s belong to the same root corresponds to the standard braid group 
representation of gl(n), while the graded or ‘exotic’ solutions emerge when different 
root sectors are involved with at least one A,, = pipj, = -1. We may look again 
at (3.2), which has now reduced to a single equation f ~ ~ ( A ) g ~ ~ ( A )  = ( 4 -  q - ’ ) n ( A )  
suggesting for the individual elements a form 

wiisisni, (-Jear;y the ?WO pj’ ai2 ie;aied *y /$ ~ +;)-I 9,  

(3.3) 
1 . .  

$(A)  = ( 9 -  q - ’ ) . ( x ) u i j ( A )  g$!(A) = - 
. i j ( X )  

where u i j ( A )  are for the time being arbitrary functions. W e  now use equations (2.Q) 
and (2.66) which relate the diagonal elements to the nondiagonal ones and give 

cj, d, being some constants. A closer look at the above relations (3.4) shows that 
the LHSS are independent of the indices k and i and therefore a natural choice for 
uij  is the factorized form u i j ( A )  = ui1’(A)uj2’(A), where U,!”’, a = 1,2 are 2N 
independent functions. Such a choice directly results in 

where, due to equation (3.1), the constants become related by ( 4 -  q-’)cjdj = pi: 

In a similar way we may easily obtain the solutions for the elements and f,!! 
through the functions U$’: using (2.4). Coiiecting aii the expiicit soiutions above for 
different elements of f and g we finally arrive at a non-additive solution of the YBE, 
which can be expressed in matrix form as 

R ( X . P )  = R;$X,p)eik Q ejl 

. .  

(3.6) 



Solutions of the non-additive YBE 6311 

where dij = ( q  - q-')c,di/cjidij, e i j  form the basis of gl(N) with ( e i j ) k r  = 6,,6,, 
and the solution is normalized by a factor .(A). Some important comments regarding 
this R-matrix solution of the YBE (1.1) for arbitrary values of N are in order. Firstly, 
the factorized form of A, p dependence is explicit in (3.6). Secondly, the structure 
of constant parameters +ij clearly induces a restriction +ij+ji = 1 resulting in 
the inclusion of i N ( N  - 1) free parameters in the solution. We should note that 
the oonstant multiplicative deformation of the 'particle conserving' R-matrix was also 
considered earlier [lo] and an explicit solution with deforming parameters like +ij was 
first found in Ill] for the additive case, as a generalization of the six-vertex model. 
However one may observe that in our non-additive solution (3.6) 2 N  additional 
arbitrary functions U!"'( A) are also present, which may be considered as the spectral 
parameter dependent extension of the constant deformations [ll]. It is also relevant 
to note that at X = .U the above solution directly yields the braid group realization 
related to gl( N )  in the standard representation 

R =  C p i e i ; ~ e i i  + C + i j e i i ~ e j j  + ( q - q - ' ) C e i j @ e j i .  (3.7) 
i#j i < j  

We recall that the pi's can only be taken either as q or - q - l .  Interestingly if we 
choose pi = q for i E ii,. . . .mi ana pj = -4-l  for j E jm + i , .  . . , m + n] 
with m t n = N ,  resulting in A,, = pipj  = -1, one gets from (3.7) a braid 
group solution related to graded gl(m I'n) [SI, but with multiparameter deformation. 
However if all the pi's are chosen to be q or -q- ' ,  we recover the standard braid 
group realization of gl( N) [7]. Note that similar deformations was obtained earlier 
through the twisted quasitriangular Hopf algebra [7,9] and the graded solutions for 
+ha - A A : . : . , ~  ..*" f _.... ,a :.. r-11 
L I I b  L."Ylll"r Laab wa.7 L"",," 111 ,",. 

It is natural to expect that the !mown non-additive solutions in the two dimensional 
case [S, 61 will be recovered from our general solution (3.6) for N = 2. We observe 
that in the standard situation, Le. when p, = p, = q with A,, = Q', the earlier 
result is indeed obtainable as a reduction. However in the 'exotic' sector, i.e. when 
p1 = q, p, = -q-' with A1, = -1 the solution we get as a reduction of (3.6) does 

7h nnderstand 
why this happens, we notice first that for N = 2 the 'three particle' equations (2.2) 
become redundant, lifting certain restrictions on the form of the solution. We also 
find that (2.5) gives 

1 ~~~. 

net represent the ge!?ex! fer= nbtnined ear!ier [5,6j fer this E e .  

(1 + Azl)(fii(A)gl;(A) - fii(X)gg(A)) .= 0 (3.8) 

ana at A,, = -i the reiation between the diagonai eiements, simiiar io (3.ij, is not 
essential. Therefore in this sector relations like (3.3) may now be modified to 
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where f, g and U are arbitraly independent functions with the notation f( A)  = 
f;i(A)/fi,'(A), g(A) = gg(A)/g:i(A). Note that the above solution finally recovers 
the earlier result and though it gives the same 'exotic' braid group representation 
as before, it is more general than the N = 2 reduction of (3.6), reflecting a special 
freedom in the two-dimensional case. After obtaining the explicit solution for arbitrary 
N in the triangular form, we intend to study next the symmetries of the YBE 
for generating more general 'particle conserving' R-matrices with multicomponent 
spectral parameters. 
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4. Re-Yang-Baxterization through symmetry transformation 

Given a braid group solution it is a natural to pose the problem of immediately 
generating a non-additive type spectrai parameter ciependenr soiurion of The YBE, 
or in other words Yang-Baxterize it using some symmetry relation of the equation. 
We recall that a similar problem has been studied extensively in the literature for 
the additive case [4] and attempt to present here an analogous scheme for the non- 
additive case, which not only would justify the existence of solutions like (3.6) but 
also represent some re-Yang-Baxterization procedure capable of yielding a class of 
IL-1,141, ,I,=> w,,,, IIIYIIILuIIIpuIIGIII  >yr;crr a1 pa, a.ImIcIcI  3. 

Motivated by the factorized form of the solution (3.6), we consider the following 
transformation of the R-matrix 

" ..2.L -..,.: ------ ̂ -. ----I-̂ , .."*"...".,,-" 

with 2N arbitrary functions u! " ) (A)  and ask whether the bicomponent spectral 
parameter dependent R-matrix would be a solution of the YBE (1.1). if the original 
R(Al ,p l )  is an exact solution of it. Inserting (4.1) directly into the equation one 
finds that it is possible to put the following sufficient conditions on separate spectral 
parameter dependent entries 

where ( i l , i z , i 3 )  are incoming and (jl,j2,j3) outgoing indices with the rest being 
intermediate ones. Tb satisfy these equations we assume the 'particle conserving' 
condition on the initial R-matrix without necessarily limiting it to triangular form. 
This assumption, as evident from (1.1). obviously restricts the possible values of 
intermediate indices like IC;  and I ;  yielding relations like 

" ? ; ( A 2 ) 4 ) ) ( A * )  = d1'( >* xz)U;;)(Az) uf'(Az)U{:'(A2) = U!:)(A2)U!:)(A2) 

due to which the condition (4.20) is clearly satisfied. In an exactly similar way the 
remaining relations (4.26) and (4 .2)  can also be shown to hold, consequently proving 
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that k ( X , @ )  is a genuine solution of the YBE for the ‘particle conserving’ case. At 
the cost of restriction on the deforming functions U{’)( A), more general assumptions 
may possibly be posed; however these will not be discussed here. One may note that 
there exists a spectral parameter dependent similarity transformation of the form 

R(X,fi) -+ [.%A,) @ S ( P , ) l ~ ( ~ , f i ) [ S ( ~ , )  @ s (Pp) l - l  

which keeps the solution of the non-additive YBE (1.1) invariant. Applying such 
a transformation on the R(X,fi)-matrix given in (4.1) and choosing Si,(X2) = 
6, ,uj2) (X2) ,  the solution (4.1) may also be written in a simplified form as 

where .,(A) = ui1’(A)ui2)(A) are now N arbitrary functions, one of which may also 
be removed through an overall scaling [12]. 

We return again to the form (4.1) and consider some of its relevant consequences 
when the components of spectral parameters are coincident. This gives 

(4.3) 

which now represents a transformation between single component R-matrices, 
reflecting the symmetry of the non-additive YBE in the ‘particle consewing’ case. 
It may be noticed that if one imposes ‘charge conjugation’-, ‘parity’- and ‘time 
reversal’-like symmetries on the original R-matrix, they are evidently broken by the 
transformation (4.3) and therefore it may be considered as some non-additive type 
of generalization of the ‘symmetry breaking transformation’ [13]. TI see this in more 
detail, let us write (4.3) explicitly for N = 2 by taking the original R-matrix as the 
known trigonometric six-vertex solution 

(4.4) 

iti‘ - - R;; -.- = sin a 

where we have introduced D(X) = u , ( X ) / u , ( X )  assuming a reduction uf = U: E ui 
and used the normalization freedom of the R-matrix. Further restricting D(X) to be 
independent of the spectral parameter, we easily find that only the elements Rti and 

are now deformed as the ‘P-transformation’ of [13] and give the deformed six- 
vertex solution [ll]. On the other hand if we assume uj i ‘ (X)  = (u:”(A))-‘ in (4.3) 
the only terms which would suffer deformation are R::( A ,  p )  = sin aF( p ) / F (  A )  
and R ; j ( A , p )  = s i n a F ( X ) / F ( F ) .  The requirement of additivity of spectral 
parameters in the R-matrix naturally gives the choice F(X) = eiAe reproducing 
the ‘a-transformation’ [13]. Another interesting fact about solution (4.4) is that 
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it recovers exactly the known non-additive solution, important in the context of 
physical systems like ferroelectrics in an electric field, the two dimensional king 
model with nearest and next-nearest neighbour interactions etc [14]. Therefore, the 
transformation (4.3) found here, being wlid for arbitrary N, may be expected to have 
physical consequences in a more general situation. 

Returning to equation (4.1) it may also be observed that by the repeated use of 
this formula it is possible to formulate a re-Yang-Baxterization scheme for generating 
multicomponent spectral parameter dependent R-matrices starting from a braid group 
representation given by 

A ffindu and B Basu Mallick 

The appearance of functions like U ! ~ ' ~ ) ( X , )  shows that at each step of the iteration 
one may introduce new arbitraly functions of additional spectral parameters. If 
however we consider only s = 1 , a more conventional Yang-Baxterization scheme is 
obtained with a single component spectral parameter, though generalized now for the 
non-additive case. We also see that such a Yang-Baxterization can recover directly 
the explicit solution obtained in (3.6) starting from the braid group representation of 
gl( N). On the other hand, we may also start from known additive R-matrices already 
Yang-Baxterized by the standard method [4] and re-Yang-Baxterize it using (4.5). For 
example, considering the R-matrix of the six vertex model and iterating it once we 
may obtain the bi-component spectral parameter solution given in [SI. 

Before focusing on the potential implications of our multi-spectral parameter 
deformation (4.5): let us recall briefly the main points of Reshitikhin's multiparameter 
deformation of the R-matrix related to the twisted Hopf algebra [9] in simpler 
matrix language [q. Given a braid group representation R, one can construct a 
new representation as 

R = F-I RF-' (4.6) 

if the deforming matrix F itself satisfies the braid group like equations 

with the conrrrainr FiiFii = 1~ Returning now to our relation (4.5) and for simplicity 
restricting ourselves to only the first iteration, we may write it in the following matrix 
form 

R(X, p) = F - ' ( X , p ) R P - ' ( X ,  p )  (4.8) 

taking R as the braid group solution (3.7) and the deforming matrices F, E expressed 
as 
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Clearly the requirement U!') = U?) ui makes F ( X , p )  = E(A, p )  giving a striking 
similarity of (4.8) to Reshetibin's construction (4.6), but now with the inclusion of 
spectral parameters. More interestingly, the related F( A ,  p )  matrix now satisfies the 
spectral parameter dependent 'braid group like' equations analogous to (4.7) 

F I ~ (  9 P )  F13( Y) Fa( P 9 Y)  = FB( P 3 7) Fi3( 9 Y )  F12( P I  

RizFn(X 9 7) Fz(P, Y )  = Fn(fi ,  Y Y) RI, 

%( > /I) Fi3 ( 3 Y )  RB = R, F I~  ( t Y )  FIZ( P )  

(4.9) 

along with the constraint Flz(A,p)F21(p,A) = 1, resembling again the constraint 
of Reshitikhin. Moreover, even in the general case of (4.5) with arbitrary s, 
similar reasoning applies resulting in a generalization to the multicomponent spectral 
paimiicicr. IWLC IIUWCVCI ~ i i a i  IICIC LIIC UC~UIIII~II~ I I I ~ L I I X  r ,  wrirrary w ncwcuhiiui D 
construction, may be expressed as the direct product: F ( X , p )  = A ( @ )  @ A-'(X) 
with A(X) = Ciui(A)eii, also showing why the parameters in the standard 
deformation [7] are greater in number ( f N ( N  - 1)) than the 2N number of 
parameters found here. On the other hand the salient feature of our construction 
is that the deformations here are spectral parameter dependent in contrast with the 

This opens up the promising possibility of extending Reshetibin's approach to the 
inclusion of spectral parameters, leading up to the notion of a parametrized twisted 
Hopf algebra. 

.."-"..a.-- LT̂.̂ L ~ __^_. L... L,.-- .L^ _ .̂..!__ " .- """L-.:LL:-." 

I;?own mc!tipnrnmeter deformrtioc [7, q. 

5. Concluding remarks 

A factorization ansatz in spectral parameters is shown to be effective for finding 
explicit ( NZ x N2)  R-matrix solution of the non-additive YBE. Structurally such 
solutions fall into two classes yielding at the braid group limit either the standard or 
the graded solutions related to gl( N )  with multiparameter deformation [7]. 

An interesting symmetry uansformation is found to exist for the 'particle 
conserving' R-matrix with arbitrary, spectral parameter dependent, deforming 
functions. Such functions may be considered as the spectral parameter dependent 
extension of the constant deforming parameten [ll] appearing in the additive case. 
Repeated use of the symmetry transformation consequently presents a re-Yang- 
Baxterization scheme extending the notion of conventional Yang-Baxterization- 
from single to multi-component as well as from additive to non-additive spectral 
oarameters. On the other hand they also have a remarkable analo_w with 
keshetikhin's construction of the deformed R-matrix related to the twisted 
quasitriangular Hopf algebra, which might lead to its possible spectral parametrized 
extension. 

It is desirable however to investigate similar non-additive solutions related to 
braid group solutions other than gl( N),  including their higher representations 
and to explore the possible symmetry transformations. We hope that the 
non-additivk R-matrices studied here might also be applicable to the spectral 
parametrized approach [ 151 of Faddeev-Reshitikhin-Thbtajan construction, as well as 
for constructing Lax operators of quantum integrable models exploiting the underlying 
quantum group structures [16], as has already been done in the traditional additive 
case. 
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